Поиск
?


Скопировать ссылку на результаты поиска



Всего: 4    1–4

Добавить в вариант

Задание № 30
i

ABCA1В1С1  — пра­виль­ная тре­уголь­ная приз­ма, у ко­то­рой сто­ро­на ос­но­ва­ния и бо­ко­вое ребро имеют длину 6. Через се­ре­ди­ны ребер АС и BB1 и вер­ши­ну A1 приз­мы про­ве­де­на се­ку­щая плос­кость. Най­ди­те пло­щадь се­че­ния приз­мы этой плос­ко­стью.


Най­ди­те пло­щадь пол­ной по­верх­но­сти пря­мой тре­уголь­ной приз­мы, опи­сан­ной около шара, если пло­щадь ос­но­ва­ния приз­мы равна 7,5.


Аналоги к заданию № 1054: 1084 1114 Все


На ри­сун­ках 1 и 2 изоб­ра­же­ны пра­виль­ная тре­уголь­ная приз­ма ABCA1B1C1 и ее раз­верт­ка. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти приз­мы, если длина ло­ма­ной ACA1 равна 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та и точки A, C, A1 лежат на одной пря­мой (см. рис. 2).

Рис. 1

Рис. 2

1) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 36
3) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 18
5) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

Аналоги к заданию № 1671: 1703 Все


Задание № 2129
i

ABCA1B1C1  — пра­виль­ная тре­уголь­ная приз­ма, все ребра ко­то­рой равны 3. Точки P и K  — се­ре­ди­ны ребер BC и CC1 со­от­вет­ствен­но, M ∈ AA1, AM : AA1  =  1 : 3 (см. рис.). Най­ди­те уве­ли­чен­ный в 25 раз квад­рат длины от­рез­ка, по ко­то­ро­му плос­кость, про­хо­дя­щая через точки M, K, P, пе­ре­се­ка­ет грань AA1B1B.


Аналоги к заданию № 2129: 2159 Все

Всего: 4    1–4